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The resistance to the relative motion of gases 

I. P. WILLIAMS and D. K. SARVAJNA 
Department of Mathematics, University of Reading 
M S .  received 4th August 1967 

Abstract. Expressions for the resistance to the motion of one gas through another 
at any relative drift speed are found, on the basis of a simple kinetic theory model. 
Approximate expressions giving a good degree of accuracy over all speeds are pro- 
posed, and it is suggested that the results will be of use in, for example, the study of 
gas streaming from stars. 

1. Introduction 
In  many fields of physics and astronomy the problem of the motion of one gas through 

another is of considerable importance. We mention only the problems associated with 
ejection of gas from the atmosphere of a star, those involving collision mechanisms in inter- 
stellar space and problems associated with cloud formation in the Earth's atmosphere. 
Rosenberg (1934), in an astronomical context, obtained the resistance of one gas moving 
through another by assuming that both gases have the same molecular mass and the same 
kinetic temperature. In  this paper, using a somewhat different method of calculation, we 
generalize the problem to include the case of dissimilar gases with different molecular 
masses and different kinetic temperatures. No transfer of heat from one gas to the other is 
considered, however, and we assume that the molecules of both gases can be regarded as 
maintaining their equilibrium velocity distribution throughout (see § 8). The  expressions 
found reduce to known forms for a number of special cases, which are discussed. Simple 
approximate forms which give a good degree of accuracy over all relative speeds are also 
obtained, together with an estimate of the error introduced by using such approximations. 
Cases when the model would appear to be a good representation of the physical situation are 
discussed as well. 

2. The kinetic model 
We assume that the molecules of the two gases can be represented as small elastic 

spheres. Let gas 1 have n, molecules per unit volume, each of mass m, and radius U,, and 
let gas 2 have n2 molecules per unit volume, each of mass m2 and radius u2. We assume that 
the random velocities of the molecules of both gases have a Maxwellian distribution about 
their average drift velocity, this being the equilibrium distribution. Thus the probability 
of a molecule of gas 1 having a velocity component along some prescribed direction be- 
tween u1 and U, + du, relative to the average drift velocity of the molecules of gas l is 

where ,8, = m,/2kT,, k being Boltzmann's gas constant and T the kinetic temperature of 
gas 1. 

Similarly, the probability of a molecule of gas 2 having a velocity component between uZ 
and u2+duZ in the same direction, relative to the average drift velocity of the molecules in 
gas 2, is 

where p2 = m2/2kT2 and T z  is the kinetic temperature of gas 2. 
Let the relative drift velocities of the two gases be V, and let us take the direction of V as 

the polar axis in a system of spherical polar coordinates ( Y ,  0, +) with origin at the centre of a 
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typical molecule of gas 2. In  a collision between this molecule and a molecule of gas 1 we 
take 6 to denote the angle between the polar axis and the line of centres of the two molecules 
at the moment of impact. Further, let us take this line of centres to be the prescribed 
direction mentioned earlier, so that the molecules have velocity components U, and u2, 
respectively, along this line. 

The reflection of the molecules is assumed to be specular, so that the component of 
relative velocity along the line of centres is reversed, while no change in the velocity occurs 
perpendicular to this line. We assume that the effective cross section for collision of the 
molecules is dependent on their relative velocity (U, + u2 + V cos 8). If we take the repulsive 
force between molecules in collision to be K1/rn,  where K 1  is a constant and r their separa- 
tion, the distance of closest approach 5 is given by 

= A(u, + 2.62 + v cos 6 )  - 4'(77 - 1) (3) 
where A is another constant (= 2K1/(n-  1)). 

For the special case of hard spheres n -+ CO and 5 = a,  + a2. 

3. Evaluation of the resistance 

transfer of momentum along the line of centres is easily shown to be 
In  a collision between a typical molecule of gas 2 and a typical molecule of gas 1, the 

The  total number of such collisions per unit time per unit volume is 

52?'zlt?2(u1+ u2 + V cos 6)~,(z~~)f~(u~) sin f l  d8 d+ dul duz. (5) 
The momentum transferred from one gas to the other per unit time along the line of 

centres due to such collisions is given, from equations (4) and ( 5 ) ,  as 

per unit volume of gas 2. 
From symmetry considerations the net transfer of momentum will be along the polar 

axis. Its magnitude will be given by integrating dR cos 6 over all possible values of the 
variables 6,  4, U ,  and u2. 

Rosenberg (1934) obtained an expression similar to (6), but with both velocity distribu- 
tions taken relative to the drift velocity of gas 1 and 5 = a, + a2. Since he assumed that 
m, = m2 and ,01 = p2, a simple transformation of the variables enabled him to evaluate the 
integral. However, if m, # m2, the simplicity of this approach fails. In  the present 
calculation the limits of integration have to be chosen with some care, but the integration is 
straightforward in several cases of interest. 

The limits of integration for u2 can be taken to be - CO to + CO, and those for + from 0 
to 2 ~ .  For the other variables, however, not all ranges of values correspond to possible 
collisions between the molecules. Provided U, > V-u2,  collisions are possible for all 
values of the angle 6. But if u1 satisfies - V -  u2 < u1 < V -  u2, collisions are only possible 
for 0 < 6 < tc, where 

If U, < - V-u2,  no collisions occur. If we insert these limits in the integration the 
resistance to the relative motion of the gases, being the rate of transfer of momentum, is 
given by 
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where 

= 1:" d+ Sm du, Im du, J@ 0 2  sin 6 d ~ ( u ,  +u2 +  cos e ) 2  
- m  V - U ,  0 

x exp( - /31ulz) exp( - P2u27 cos 6 
and 

V - U ,  

- m  - V - U 2  0 
= j r d + J w  d u 2 1  dul / a  0 2  sined6(u,+u,+ Vcos  612 

x exp( --,Blul2) exp( - P , U ~ ~ )  cos 6. 
General evaluation of these integrals with U substituted from equation (3) is clearly not 
possible. However, integration is possible for several forms for U. 

4. Exact evaluation of the integrals 
4.1. Case I :  hard spheres 

For this case 
U = const. = a,+a,. 

Considering I ,  only and integrating over 0 and 4, we obtain 

-- 8TV I duZ j ll = (a, + dul(u, + uz> exp( - p1ul2) exp( - p2u22). 
3 - m  v - U 2  

Transforming the variables (ul, U,) to (E, q) by means of the relations 

we find that 

where for convenience we have written 
P l P Z  p = --. 

P1 + P z  

Similarly for I,, on integrating over 6' and 4, we obtain 

I2 = 2x(a1 + a,)2 

Tra sforming the variables (U,, u2) to ( f ,  q )  by means of the same equations as given 
we obtain 

bove, 
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where erf denotes the error function, defined by 
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erf x = - \‘exp( - t 2 )  dt 
d v w o  

(see, for example, Magnus and Oberhettinger 1954). Substituting i,,ese values for I ,  and 1, 
into equation (7) )  we obtain an expression for the resistance per unit volume on gas 2 due to 
gas 1, in the form 

For convenience we have written 2/pV = S. S is clearly some form of a molecular speed 
ratio for the gases, as .\/p = 2/2/vW, where W is a mean thermal velocity for the gases, 
defined by 

4.2. Case 2 
Taking n = 3 in equation (3)) then we have 

= ~ ( u , + u , +  vCOS e)-,. 
I n  this case the integrals to be evaluated become 

Il = A j r d 4 j m  du, Cm du, f sin 0 cos 0 exp( -,Blulz) exp( - & L ~ ~ )  dB 
- m  v-U* 0 

which is clearly zero, and 
v-U, 

- w  -v-uz 0 
I2 = A Jr d+ Jm du, 1 dul sin B cos 0 exp( -plu12) exp( -pzuzz)  de. 

If we integrate this second integral over B and 4 and use the same transformation of the 
variables as +fore, this integral can be evaluated, to give 

Substituting the values of 1; and I ,  into equation (7) and again writing V in terms of 
the molecular speed ratio S, we obtain 

4.3. Case 3 
With n = 5, the cross section, from equation (3), is given by 

vu2  = A.rr(ul+uz+ V c o s  e)-? 
Now, by using transformations that have already been defined, we obtain 

I ,  = A J y  d4 lm du, j du, sin BV cos2B dB exp( - plul2) exp( - p2u2,) 
- w  v-U, 0 
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and 

I 2  = A j:" d+ Im du, 1 V - U ,  

- m  - v -uz  0 
du, sin 0 cos O(ul + u2 + V cos 0) exp( -plu12) 

x exp( - P2uZ2) d0 

Substituting these values for I ,  and I ,  into equation ( 7 )  gives the resistance in this case as 

4mlnlm2n2 AS 
(10) R =  

3(m1 +m2) z/p 
an expression which is independent of the gas temperature as S = 2//3V. The only case 
that is likely to be of physical interest is the first, namely the hard-sphere case. 

5. Approximate expressions 
Expressions (8), the one that is physically interesting, is mathematically rather unwieldy 

and its application in physical problems is inevitably restricted because of this. I t  is there- 
fore useful to obtain approximate expressions for this, which are more amenable to further 
mathematical analysis. This can be done by using known expansions for the error function 
(see Magnus and Oberhettinger 1954), both for small values of S and for large values of S. 

Expanding the exponential and the error function in expression (8) for small values of S, 
we obtain, after simplification, 

while the expansion of the error function for large S gives the resistance in the form 

Similarly, expression (9) reduces to 
S 2 n  + 1 

R = 8  2 (-l)n (for small S )  
m1+ m2 , L = o  n! (2n+1)(2n+3) ( 1 3 )  

1 
exp( - S2)[$ - n = l  5 2n-1n(n- (2n)!(n + l)! ----)I (2S).+l [ 2s2 S d r  

(14) 
1 

AT ---+1+ 2m,n,mzn2 
m,+m2 

R =  

(for large S ) .  

Expression (10) is in a simple form as it stands and requires no further simplification. 
It is also possible to evaluate the general integrals given in section 3 for any value of c 

in the two limiting cases of large and small translational speed. We shall now discuss this 
possibility. 

5.1. Small values of the translational velocity V 
In  this case the integration over u1 becomes approximately 

I-" dul 
-ua 

which is zero. Hence I2 -+ 0. On substituting 

T u 2  = ( u , + u 2 + ~ c o s e ) - 4 ~ ~ n - ~ ~  = (u,+u2+ VcosO) -~  
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we find 

11 = 1, ;d4 1 du1 exp( -P&) duz jm exp(-,Blu,2)dul/R (ul+u,+ V C O S O ) ~ - ~  
2 R  A 00 

- m  - U2 0 

x sin B cos 0 do. 

Expanding in powers of V cos O/(ul + u2) and ignoring second-order terms, we find, 
on integrating over 4, 

m 

I ,  = 2A lm exp( - P2uZ2) du, 1 exp( - ,Blu12) dul 
- m  - U2 U1 +uz 

x sin 0 cos 0 d0 
m 

- - 4A(2-y)V1m exp( -/?,uZ2) du, 1 (ul +u,)l-Yexp( --fllul2) du,. 
- m  - U2 3 

Using the same transformation as previously employed, namely ( = ul+uZ, 
7 = (Pzuz - Pl%)/(Pl+ Pz) ,  we find that 

where r ( a )  is the gamma function. 
The  resistance in this case is given by 

on substitution into equation (7). 

the resistance as 
We note that, when y = 0 (hard-sphere case with A = *(al + a2)2), equation (16) gives 

8 m n m n  n1lZ 
- '(-1 (al+a2)2V 
3 m,+mz P 

in agreement with equation (11). 
Further, with y = 1 corresponding to n = 5 ,  we find that the resistance is 

4 m n m n  
R = -  2 2  AV 

3 ml+mz 

in agreement with equation (10). Because of a singularity at y = 2 no expression can be 
found for the case n = 3. 

Expression (16) is therefore consistent with the other expression found. A case that is 
likely to be of interest is that when n = 13 (most likely physical value). For this value 
y = 4, and the resistance for small drift velocities is given by 

5.2. Large values of the translation speed V 
For this case Il -f 0, and after expanding in terms of (ul +u2)/V cos 0 and ignoring 
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second-order terms, we find that 

AV2-? 
I2 = ~ 1: d+ jm du2 j: dul r” exp( - p1ul2) 

7r - m  0 

The resistance is now given by 

AV2-V. 4nlmlnZm2 
(4 - d ( m l  + md 

4% + a2)2~1n1m2n2 
With y = 0, this becomes 

- v2 
m, + m2 

in agreement with equation (12). With y = 1,  equation (18) becomes 

in agreement with equation (10). y = 2 again has a singularity in the integration (integrand 
becoming independent of V ) ,  and so no comparison can be made. 

For the physically interesting case when n = 13, for high drift velocity, we have 

1 2 m n m n  
11 ml+m2 (19)  R = -  2 2  AV5‘3. 

6. Reduction to known forms 
In  expressions (8) to (14) we have found expressions for the resistance to the relative 

motion of gases, together with approximations valid for small and high drift velocity. 
It is interesting to note that some of these reduce under special conditions to expressions 
that are already known. 

If the two gases are identical, then a, = a2 = a, m, = m2 = m and Tl = T2 = T .  
Hence p1 = p2 = 2P = m/2kT, and equation (8) reduces to 

R=4nln2a22/7TkT 

This is the expression found by Rosenberg (1934) for the resistance between two 
identical gases when their relative drift velocity is V .  Expression (8) thus contains the 
results of Rosenberg as a special case. 

If one of the gases possesses very large molecules, gas 2 say, then a2 = a  3 a l ,  
m2 = m % m,. In  consequence, p2 3 P, = p and equation (8) gives the resistance on one 
molecule of gas 2 as 

This is identical with the expression found by Baines et al. (1965) for the resistance to 
the motion of a sphere moving through a gas. 
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McCrea (1935) has given expressions for the resistance to the motion of gases in the 
limiting cases of low and high translation speeds, by assuming that the molecules behave 
like hard spheres. For low speed he gives 

This is equivalent to taking the first term in the expansion (11) with T ,  = T2 = T on 
substituting for S and p. 

For high speeds McCrea's formula is 

which is the first term of (12) with T,  = T2 = T and appropriate substitution for S and ,R 
carried out. Hence the known expressions for the resistance all appear as special cases 
of the expressions found above. 

7. Error involved in approximating for the hard-sphere case 
We have already stated that expressions (8) and (9) are mathematically rather unwieldy 

and have suggested approximate expressions that are of more practical use. I t  is of con- 
siderable interest to know what error is introduced by using such approximation. As the 
hard-sphere case is more likely to be of interest in practice, we shall now consider the 
error introduced when we approximate to the exact expressions by taking the first few terms 
of the series in (11) and (12). The  procedure can easily be carried out for the other case 
using series (13) and (14) if required. The  convergence is in fact quite rapid in both cases. 
The question has been considered by Baines et al. (1965), where the same function occurs 
and we shall merely summarize their conclusions here. 

Taking only the first term of the expansion in ( l l ) ,  we find that the error is less than 
5 yo for S < 0.5, but increases up to 30% as S increases to 1.4. The first two terms of ( l l ) ,  
on the other hand, give an error of less than 5 % for all S < 1.4. Again, if we take the first 
term only of the expansion (12) the error is less than 5 %  while S > 5, but rises up to 50% 
as S decreases to 1. Taking two terms of (12) gives an error of less than 5 %  for all S > 1-4. 

This suggests that a practical expression for the resistance in the hard-sphere case 

L( 1 + S2) 
ml+m, 

( S  > 1.4). 
In  the same way practical expressions for the case n = 3 can be found if the need for them 
arises. The  expressions found for the physically interesting case n = 13 are already 
approximations and no simpler practical expressions can be given. 

8. Application 
The kinetic model we have used is valid only if the equilibrium distribution of velocities 

remains essentially undisturbed. The  restriction also applies to the work of Rosenberg. 
In  general, this is likely to remain true only if the penetration remains less than about one 
mean free path. There are, however, situations, which we now discuss, in which the 
equilibrium distribution condition is likely to be satisfied for a reasonable degree for much 
longer. 

If one of the gases is very rarefied, in comparison with the other, such as might occur 
in the flow of particles through interstellar gas following a nova or supernova explosion, 
the interaction of molecules of the rarefied gas is negligible and both gases may be assumed 
to  retain their equilibrium velocity distribution. A slightly different case is when a stream 
of one gas passes through a second gas, the dimensions of the cross section of the stream 
being small in comparison with the mean free path of the second gas. This situation arises in 
the study of comet tails in the solar wind and other phenomena involving ejection from the 
Sun. 
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Finally, the assumption is valid when the masses and temperatures of the two gases 
are very close, as in Rosenberg’s work, and this corresponds to the situation when two 
interstellar clouds collide. 

9. Conclusion 
The expressions (8) and (9) for the resistance to the relative motion of dissimilar gases 

will be of most interest in situations where the known limiting forms discussed in 9 6 for 
small and large relative drift velocities are too inaccurate, that is mainly at velocities 
comparable with the value of /3-1’2. Concerning the value of p, we have that for gases with 
comparable molecular masses at widely different temperatures /3 will approximate to 
m / 2 k T  evaluated for the high-temperature gas, while for gases at similar temperatures 
but with different molecular masses ,8 will approximate to m / 2 k T  evaluated for the lighter 
gas. If /3 is large, as will happen when both gases are at low temperatures, the expressions (8) 
and (9) will be required at quite small relative drift velocities. I t  is noticed that in case 3, 
n = 5, the resistance is independent of the kinetic temperature of the gases. 

The  more obvious simplifications in one method are those of taking the molecules to 
be spheres, with a consequently inaccurate cross section, and the assumption that the 
velocity distribution about the drift velocity of each gas is Maxwellian. The latter assump- 
tion is satisfactory if the number of collisions between unlike molecules is much less than 
that between like molecules. I t  is hoped that in any case the expressions we have obtained 
will be useful as a more accurate guide to the resistance in the various applications. 
In  particular, the expressions may be useful in modifying the orders of magnitude in prob- 
lems of gas motion in astrophysical problems. For example, the possibility of separation of 
gases of heavy and light elements is of considerable interest, and also the relative motion of 
gases with widely different temperatures or densities. 
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